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I. INTRODUCTION

Theoretical investigations of ultras.nic attenuation consist
in calculating the power loss irom the ultrasonic wave to the con-
duction electror. The theory of ultrascnic attenuation in the
absence of a magnetic field using the free electron model nave been
5onsidered by Pippard (ref. 1). The free elextron model in the
presence of a magnetic field has been given by Kjeldaas anrd _
Holstein (ref. 2) and independen i b&_Cohen, Harrison and Harrison
(féf.,s). Theoretical treatmentslof real metals were investigeted ;
by Pippard (ref. 4), Kanner (ref. 5), Akhiezer (ref. 6) and Blount
(ref. 7) in the case of zero magnetic field and by Piﬁpard (ref. 4),5_
Gurevich (ref. 8) when & nonzero gﬁgnetic field ;é preéent.

These theories have demonstrated that the attenﬁation’of
ultrasonic waves propagating through a metal depend strongly on the
product of the wayelength q éand tﬁe electrons mean free péth l.

In the short mean free path region Qhere ql << 1 the attenuation
varies as the frequency séuared mil“ When the mean free pathiisu
long ql >> 1 the observed electronic ;ttenuat?an igfound‘tg be
dependent on the first power of <the frgquéncy We

When a magnetic field is applied”longitudinall& or transVefsel&"

to the directionrof propagation the electrons begin te,mbée iﬁ



spiralling orbits. If the orbit of the electron is of the same
magniiude as the ultrasonic wave various resonance situations occur.
This case represents the phenomena of magnetoacoustic oscillations
in which the attenuation shows as oscillatory dependence on magnetic
field and is periodic in H-Ll.

The Cohen, Harrison and Harrison theory as well as Kjeldaas
and Holstein theory on magnetoacoustic show good gquantitative
results for a variety of experimental measurements for metals which
can be represented by a free electron model. However, if we were
to use the former theory for the case of a longitudinal wave
moving perpendicular to the magnetic field in order to plot attenu-
ation coefficient versus gqR where R 1is the orbital radius of
the electron, one would find no shiftes in the extrema for various
gl values greater than 1. 1In contrast, Kjeldaas and Holstein
grephs on attenuation shows shifts in the minima to be present.

In the limiting case where the magnetic field 1s negligible
we would expect the exp.essions for_the attenuation coefficient to
approach the equations obtained by Pipperd (ref. 1) in his theory
on ultrascnic attenuation for zero magnetic field. However in the
Cohen, Harrison and Harrison theory in its present form these ex-
pressions are not readily obtainable, whereas in the KJeldeas and
Holstein theory their equations do approach the limiting situation.
Another distinct difference between the two theories is the rquire-
ments on the ql values. In the former, the gl range is

restricted to values much greater than 1. In the latter there is
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ro stringent conditions for the range of ql.

Recent experiments by Trivisonno and Sajid (ref. 9) on Potassium
at John Carroll University have shown that ‘the shift in the extrema
for the longitudinal case do occur in agreement with Kjeldeas and
Holstein's thecry.

This paper will extend Cohen, Harrison and Harrison's theory
and show that this thecry also predicts the shift in extrema as
well as being adequate for all ql values. It will also be shown

that this theory goes directly over to the zero magnetic field case.



II. GENERAL DISCUSSION

Propagation of a sound wave in a metal causes the positive ions
to oscillate around their position of stable equilibrium. Since the
metal cortains a free electron gas in addition to the ions the
electrons will be forces to fcllow the ions in their motion in
order to screen out any local charge imbalance and keep the metsl
electrically neutral. However, if a phase difference develops
between the ions and electrons an electric current is generated.
These electric currents induce electromagnetic fields which are
able to transfer energy to the conduction electron. As a result
of collisions energy is transferred back to the lattice or thermal
phonons. Thus an irreversible flow of energy from the acoustic
phonons to the thermal phonons.

The attenuation can be regarded as the reduction in amplitude
of the wave psr unit distance or rather, the decrease in the number
of acoustic phonons per unit distance as it progresses through the

metal. The attenuation coefficient o is defined as

o= 23 (1)
pUVg

where p 1is the density of the metal, l/z(pUz) is the energy of the
acoustic wave, Vg 1is the velocity of sound end Q the power per

unit volume absorbed by the electrons.



The attenuvaticn of tiue sound wave by a metal depends greatly
on the size of the electrons mean free psth. At room temperature
thie attenuation is negligible because the mean free path of the
electrons is so shcrt that collisions are very frequent. Hence
the energy transferred from the sound wave to the electrons is
passed back nearly in phase. However, at low temperatures the mean
free path of the elecirons is so long that energy transferred
between the sound wave and electrons is passed back with consider-
able lag. Thus, ultrasonic attenuation in a metal is a low temper-
ature phenomena and can only be measured if the electrons mean free
path is comparable to the size of the wavelength.

It should be pointed out that although ultrasonic attenuation
is a recent phenomena its roots lie back to the old problem of
electron scattering bty elastic waves. Many transport problems =uch
as electrical and thermal conductivity can be readily explained by
the interactioh of electron and phonons. Hence,»even thougn the
range of frequencies are completely different for ultrasonic and
thermal waves they ere otherwise identical in nature and have a
common theoretical description. The major difference between ultra-
sonic attenuation and its older counterpart is that for the latter
the mean free path of the conduction electrons 1s usuelly ignored.

To date, the most direct method for generating elastic waves
is the use of piezoelectric transducers. In brief, a'piezoelectric
crystal will develop & net electrical polarization if it is placed

under elastic strain along certain crystal directious. Thus, 1f



we appliy an electric field which varied with time, between the faces
of pie.oelectric crystal a strain field is set up with the same

time variation produced at the free surface of the crystal and
propagates inio the interior. Longitudinal or transverse waves may
be produced depending upon the crystal. The waves are introduced
into the solid through a bond and electrical energy is converted
into ultrasonic energy. The waves are attenuated during passage
through the metal.

The difference between transverse and longitudinal waves
propagating in a metal is that in the former no density changes
occur and hence no electric fields resulting from space charges.
However, the ionic current mey not necessarily compensate the
electric current in which case a magnetic field is generated and
from these fields an electric field is developed.

The first theoretical investigation of ultrasonic a“tenuation
in metals is the absence of a masgnetic field was performed by
Akhiezer (ref. 6), He predicted a at at low temperatures the con-
duction electrons would act as absorbers of ultrasonic waves.

Many years later Bommel (ref. 10) and MacKinnon (ref. 11) experi-
mentally investigating attenuation of waves in superconductors dis-
covered cthat upon crossing the superconducting transition region
the electrons contributed significantly to attenuation thus
verifying Akhiezer's assumption.

The first complete theory of ultrasonic attenuation for & free

electron model of a metal was developed by Pipperd (ref. 1). The



underliying assumption was that in the absence of collisions the
ultrasonic waves adiabatically distorts the Fermi surface. For
example, a spherical Fermi surface under a small distortion trans-
forms into ar ellipsoid. When the collisions between electrons and
ions are taken into account this transformation is never completed,
for the electron-phonon interaction attempts to restore the surface
back to its original shape. Using this concept in conjunction with
kinetic methods of following a single electron through the lattice,
Pipoard computed the coefficient of attenuation for normal metals.

From the above methods it has been also shown that the attenu-
ation varies as the square of the frequeacy for gl << 1 and for
ql >> 1 where the sound wave length becomes comparable or less than
the electfons mean free path, the attenuation varies proportionally
with the first power of the frequency. Pippard's free electron
theory has successfully accounted for most experimental features of
ultrasonic attenuation.

Most of the recent theories of ultrasonic attenuation in metals
is based on the Boltzmann equation for an electron distribution
function. Its major advantage over the kinetic method is that if
we were to incorporate the effect of an applied field, the calcula-
tions appear to be less formidable. This point may be debatable.
Steinberg (ref. 12) and Blount (ref. 7), have used this method in
calculating the coefficient of attenuation. These results are in
agreement with Pippard for arbitrary gl values in zero applied

magnetic field.
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The main objective in the use of the Boltzmann transport equa-
tion is to study the distribution function £(V,r,t), which repre-
sents the local concentration of particles in a state K in phase
space in the neighborhcod of the point r in real space. In order
to extract the information about f, it is necessary to consider
tne causes which would tend to procduce a change of f with time.
The basic assumpticn in this technique is the use of Liouvilles'
theorem on the invariance of volume occupied in phase space.

The Boltzmann transport equation in the presence of a sound
vave is determined by

: - >
(g%)c = %% + (V- V)f + g% + (g . Vk)F (2)
where F 1is the force per particle obtained from the ILorenz equa-
tion V 1is the velocity of the particle in K space and
(Bf/Bt)c represents collisions between electrons and phonons.

Using the free electron model Pippard (ref. 1) calculated the

attenuation for longitudiral and transverse waves with no restric-

tion on the gl values. The results for the longitudinal wave in

the absence of a magnetic field is that

_ _om (q})ztan'lql . j]
PVsT L 3(q1 - tan~Yq1) * (3)

where T 1is the relexation time and n the number of particles

per unit volume. For ql << 1, equation (3) reduces to

4 nmVpagl
ST (4)
PVg

o4 =



where w is the frequency and Vp the Fermi velocity. In the
other extreme; gl >> 1 the coefficient of attenuation becomes

nMWFn
pV

G,'.:?l
6 )

independent of 1.

The attenuation for transverse waves is given by

-1
C o [2(q ()2 41,
p = VT 3 L_ = tan™ " ql - 1 - (8)

At low frequencies for which the mean free path is smaller
than the wavelength, that is gl << 1, the attenuation coefficient

may be expressed as

1 nuVpo
am = (7)
T" 5 ov 2

s
When the product of ql attains values greater than unity
(q2 >> 1), the attenuation coefficient is found to be

nmV
& ®
PVg

At extreme frequencies where wt >> 1 the attenuation coefficient

is given by

- m ’
a"]:' - vaT (9)

beind independent of frequency. If we furtherllet T -» » then
op = 0. This agrees with the usual conclusion for ideal metels that

there is no electron-phonon interaction for shear waves.

We turn now to the effect of a magnetic field on the attenu-
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atio, considering a free electron gas. When a magnetic field is
applied the electrons move in spiralling orbit. This causes the
»lectron's mean free path to be reduced, thus having more collisions
with the iattice. Therefore, one would expect that as we increase
the magnetic field the attenuation decreases monotonically. How-
ever, this phenomena depends primarily on the gl +values used.
For gl << 1 +the attenuation decreases for all values of
magnetic field since the effective mean free path of the electrons
is decreased. Steinberg (ref. 13) showed that for this case and
where the magnetic field is perpendicular to the direction of
propagation and polarization (shear waves) the ratio of the atten-
uvation coefficient in the presence of a magnetic field o(H) to

the attenuation coefficient in zero magnetic field is given by
alH 1 1
—%—Ly =~ 10)
apl0) ™ 1 4 (2w,1)2  HZ (

vhere w, 1is thé cyclotron frequency. If the magnetic field I
goes to infinity the attenuation coefficient approaches zero.

For ql >> 1 the attenuation varies in an oscillatory manner
for certain geometries. This phenomena was first explained by
Pippard (ref. 14) and independently by Morse, Bohm and Gavende
(ref. 15). Their interpretation which appears to agree with
experiment relates the variation of the attenuation coefficient
with the relative sizes of the wavelengths and orbit diame%eg of

the electron.
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This phenomena can be explained by noticing that the electrons
FPermi velocity is several hundred times the velocity of the ultra-
sonic wave, the electrons can complete many orbits before inter-
acting with the wave. Thus, due t- the electrons velocity the
variation of the local electric fields appear to be effectively
stationary in space. Consequently, the effect of the magnet is
to create a coherence between the electrons velocity and the ions
velocity. It should also be remembered that its only the electrons
at the Fermi surface which can absorb energy from the sound wave
and lose it by relaxation processes.

By adjusting the diameter of the electrons orbit to equal
one half the wavelength of the sound wave a resonance condition is
obtained. Thus, in ultrasonic attenuation meximum attenuation is
obtained by the orbit dimensioﬁs rather than the extremal areas as
in the Hass Van Alphen effects.

Using the resonance and cyclotron relations

2R = (n + %)%
R~ VE _ Pe

" eB  eH
m:ﬁ:-e—li
C m me

" which yields



p _ SR
¢
ceP = (n + %’-)7\
1 _eA :
Af-I_'"c}? ‘ (12)

Thus, by studying ultrasonic attenuatién for single crystals a
great deal of information is obtained about the shape of the Fermi
surface.

To calculate the attenuation coefficient in the presence of a
magnetic f;eld we make use of the Boltzmann equation.“ This is
essentially the same method as used previously but with the excep-
tion that F in equation (2) is modified to include the external

megnetic- field.. F is the Lorenz force, ' : -

- —V'
F = -e(§+g )

H= HO + Hl . ‘ ‘,(13)_

where H includes bbth the applied field Hy and the magnetic
field Hl associated with the sound wave.
The solution of the above equation is obtained by an ingenious
method due te Chamber (ref. 16). The assumptions used were,‘that
(1) the relaxaticn time is a ponstént and
(2) &f = £ - £
which represents the change in the electron istribution function
from the perturbed f to the uﬁperturbedggtate fo. This cﬁéngg

is set equal to zero immediately after collisioms.
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An electron contributes to the distribution funection
£(rg,Vo,tg) only if it is the point ry,Vy with energy E in phase
space at time tp. This electron will have followed a certain
trajectory since its last collision. Thus, at time t; it was
scattered onto trajectory T at r;,Vy. The number of electrons
scattered onto T is f(rq,Vy,t7)dty/7 and the probabil’ty that
an electron will not scatter before reaching r,V is
expl-(tgy - t1)]/t. Thus, the distribution function f(ro,Vo,té)
is found by integrating the number scattered ontc the trajectory
at previous points before reaching rg, weighted by their proba-
bility of ~eaching rq:

fto atq i -(to-'b)/'l' . o .
£(rg, Vg, tg) = —= £(ry,V1,%7 e S (14)
-0

This technique is denoted as Chamber's trajectofy method.



III. CALCULATIONS

The relative attenuation coetficient is determined from the
nonvaniching components of the conductivity tensor oij' Using the
esuvations developed by Cohen, Harrison and Harrison the attenu-
ation coefficient under the application of an applied magnetic

field is given by

Ons + iP
22
S,, = Re|— |- 2 (15)
011022 * (03p)" + ifogg
212
+
S,» = Re (1+1p) —1-1 (16)
1
; (0y,)
On, + ip +
22 '
L. Ull -
( :n \2
Ssz = Re[‘—}-—i—l—a.-)'-] -1 (17)
035 + i

where 577 represents the relati&e attenuation coefficient for a
longitudinal wave moving perpendicular to a magnetic field; S22
corresponds to a transverse wave moving perpendicular to an applied
field and 833 corresponds to a transverse wave moving parallel to
the field. The attenuation is obtained by multiplying Sij by
nm/pV 7.

The effective conductivity cid is derived from the con-

15
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auctivity tensor Oij by means of a reciprocal tensor R; 3 where
R:: = - hus% O s (18)
+d 30(1 - dwr)VE Y
and
sr=[1-R1.-Z (19)
%

The conductivity tensor is given by

o0
30 (1 - iwrt)
_ 2% : z : €n
11 = 2,2 (1 - iwr))1 - 1+ i(ow, - o)1 (20)
q c
)
n=o
Coo = 30, ; °n (21)
22 = 290 I+ i(nw, - o)t
yA
T
- n
0'33 = .)O'O 1+ i(mc - (D)T (22)
N=-o
n=oo
_ _ 30p (1 - ia.."r)gr'1 (23)
912 = "1 T 2q3 1+ ilnw, - w)T
n=-o00
Here
X
g,(X) = }1-( f J,n(2t)at (24)
0

gl (X) = & g,(X) (25)



X
r, (X) = / t2g,(t)dt (26)
0]
no
sy, = 3r, - -z g, (X) (27)
where X = QVF/mc. This term can be written as the product of the
ultrascnic wavelength and the orbital radius of an elect:ron moving

perpendicular to a magnetic field. The radius can be represented

as

Vp Vg
R: = = ——
ed @
rc
therefore,
X = gR

The above equations are due to Cohen, Harrison and Harrison.
The calculations of these equations in their present form prove
to be a formidable tesk. This is due to the nature of the series
vhich involves integral Bessel functions. Thus, it was necessary
in the Cohen, Herrison and Harrison peper to limit the equatlons
for the cese where n = 0, hence, eliminating the sums. It was
also feasible throughout products involving ql terms where this
product was not much greater than one. Due to this limitation no
shift in the relative attenuation for S11 was observed and no
single analytic expression which can approach both extremes where
H equals zero and H equals infinity were obtained.

For the new extension the above difficulties are removed. The

only assumptions used throughout this paper will be thail terms
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involving wt as well as terms containing the square of the ratio

of the classical skin depth to the phonon wavelength is small and

set equal to zero. Most metals fulfill this requirement.

In order to extend the former theory it ic necessary to take

all the terms into account. Thus, the relative attenuation coef-

ficient must contain the complete series involving integral

Bessel functions. By using equation (18) in conjunction with

equation (20) the effective conductivity tensor can be written as

Ii=o

(l - i(.l)’t) gn

1+ i(m)c - )T

. —-00
0yq = 212 (1 - iwrt) — (28)
: 1 - tar (1 - ior)en
) ) 1+ i(nw, - o)t
N=-w
n=co
T
5 (1 - dor)
1+ i(m)c - w)T
Siwt n=-o .
' t—3 -
Olp = P = (29)
gn(l - iwt)
1 - dot - 1+ i(ow, - @)t
=00
n=co
Opp = °n
22~ T - ot 1+ i(mw, - ©)7
=00
Yl=00 '
g
En_ (1 - iwt)

(1 - iu)'r)gn




The relative attenvation 8S; for ultrasonic waves propagating

ij
in an ideal metal under the application of an applied magnetic field
is derived in appendix A. However, even though all the terms are
included in a compact form we are still left with the problem of
sumning over integrals which contain Bessel functions. To remove
‘his complexity we use a direct approach to the problem of summing
infinte series in closed form. This method is outlined in detail

in appendix B.

Combining the results of appendixes A and B the relative

actenuation coefficient can be written down as

— -
(@)?|__1
817 = ~*3 5-1]-1 (31)
)
b+ A2/
- w —_
Sop (32)
f—)
sf7 + &
l
Here as derived in Appendix B
N=o0
(_l)nXZn

b = - = (34,
2, XB 2 , X8
(2n + l)[(l . qzzz) ... (n + q212>:]
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(2 +1)> 124 X | 2 , X %)
n qzlz e o o NN v q272

n=

N=o00

2 2
(2n + 1)(2n + 3) (12+ Y) ”(nz+ X )]
[: q%1% Q%2

n=o

1 ( -1 )nXZn

+ .
( 1 )2 X2 XZ
1 (2n + i;[Kéz + qzlz) e o <%2 + aggéj]

n=1

N=c0

(-1)Pxen

' = (37)
2, X8 2, Xt
(21’1 + 3)(2n + l)[(l + quZ) e o o Ql t q—zl—z-)]

These expressions are extremely easy to work with. No diffi-

n=1

culty in any of the limiting cases or in any oscillatory situation.
The ease in handling the equations will further be explored in

section IV.



IV. RESULTS AND DISCUSSION

Confining ourselves torpropagation along directions of high
symmetry we can avoid some of the complexities which cen arise.
There are three cases we shall analyze in detail. For each case
the relative attenuation coefficient, Sll’ 822, and SSS under the
application of a magnetic field will be discussed. For the
phenomena of magnetoacoustic oscillations graphs, as well as
tables are presented. Whenever it is possible comparilson between

experiment and theory will be made.

A. High Field Limit

When the magnetic field is extremely large the attenuation
coefficient tends to a limit, different for each of the three
attenuation coefficients. This limit is found simply from equa-
tions (34) to (37) by allowing X to go to zero as H approaches
infinity. As X goes to zero the series approaches zero
rapidly. Hence, only the first term of each series is necessary
since any further terms will be zero automatically. Thus, the

following is obtained

22
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1l

n=co

n=
Ho0

X0

=]
Fx
>0
N=co
(_lnanZn-l . g X
(2n+l)<lz+}2{2>...(n2+—}2%) °
— Q' q-1
Hoo
X0
~ (-l)nanzn
5 =
(2n + 1)(2n + 3)[(12 + )2( 2) . . . (n2 + X2 )
q21 qzzz

+

22

=00

N=oc0
1 | (-1)En
) 2 2
4 (2n + 1)[(12 + ;(2) . (nz + X
q-l qzl
n=

| 2x2
15

X

4 ee———

3q

2
2,2

(36)



n=0o
) 2 X 2 X2\ 3
(2n + 3)(2n + 1)| {1¢ + 2) R LN )
qzz q 12

n=1
Hoc
X-0

2

1 X

- 5-3 (41)

Inserting the above expressions into equations (31) to (33) we

obtain the following values for the relative attenuation coefficient:

B B
2.2 2,2
_al 1 - o1 = S
Sll =43 Xz 1 1= 15 (42)
X, 5
- S <
L 15 3q212 g
- -
Saz = - = " =0 (43)
2 cm——
2 o X 9
3= X2 + +
15 3q213 XZ
b _5- -—
l 1
333 = -—-————E-- 11=20 (44)
&5
3 15



The results that 539 saturates in e high magnetic field can
readily be explained by the fact that the electron's gyro radius
becomes smaller and smaller and thus tends to approach the zero
field value. For the case of shear waves the attenuation coef-
ficient tends to zero as H-2. This is due to the fant that the
attenuation decreases since the effective mean free path of the
electrcns 1is decreased. The predictions firom the free electron

model in this respect have great validity.

B. Low Field Limit

In the low field 1imit we expect that the attenuation
coefficient to approach Pippard's result for zero magnetic field.
Thus, allowing X +to approach infinity while H goes to zerc

we obtain the following:

H

n=co
b - ( l)nXZn
2 XZ
(2n + 1) (;? + ———E) . e . <%2 + 2)
a®1 a®1
n=1 .
0
X0
~=00
/ 1 2n
= E A 21)1 iql) 1 - & ten” -1 g2 (45)
n=0
n=oo
7 (_l)n2nx2n-l
(én + 1)l {14 + -0 R Gl é )
L a4l q“1
n=1

H-0

X0



T1=co

Vo= - 7 2 \|
(2n + 1)(2n + 3) (12+ 2{2) Ce (n2+ }2{2)]
q-l gl
n=
H-0
X0
=00
! I Y ik
2 2 2
(q1) (2n + 1) (.12-*- }2{2)-”(1’12*"5")
g1 212
n=
H~0
-1
e T 1 L r (47)
4 (q?) 2q°1
N=o00
sl _(u% _
=3 7 . 2 2
(2n + 3)(2n + 1) klz +ﬁ§—-z-> .. (n?" + ;{2)
q~1 : q“1
n=1
H-0
X0

= L tan-l z[:l+ l]- L (48)
UM PRI T

Substituting the above expressions into equations (31) to (33) we

obtain the following:

2 2 -1
51y = {82 ( - 1) -1 - jjlatlinal (49)
1 - ql - tan™"ql

tan"q?
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1
Szz = - -].
Ljtan "ql 14 1 :] 1
N (a)2)" 2(a1)?) ,
-1
2 2
_2fen)f /@)t + 1. 1 .
= =5 [ R tan™q1 - 1{ -1 (s0)
2 2 -
2(qal 1 + 1 -
Szz = (% ) [kgk)ql tan lql - %] - 1) = 822 (51)

Y

These results are in exact agreement with Pippard's theory for
the case of ultrasonic’wave propagating in a free electron model of

a2 metal in the absence of e magnetic fileld.

C. Magnetoacoustic Oscillations

When the field s of suc. magnitude that the electrons orbit
dimensions are comperable with the wavelength, the attenuation’is
osclllatory. The effect of attenuation on the electrons mean Free/
- path for longitudinal and transverse waves 1s show~ by figures 1
to 6. These plots may be regarded as relative attenuation as a .
function of the product of phonon wuve number and the radius of &an
electron. R 1s inversely proportional to the field.

An important anomely arises for the case of a longitudipal wave ’,
moving perpendicular to the magnetic field. This anomaly is
strikingly revesled in figures 1 and 2, which shows that for differ-
ent ql wvalues a shift in the minimum occurs. 'The“maximum posi< .

tions are not affected by varying ql. In table I, points of maxi-
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mum and minimum positions for 547 &re given.

The above anomaly has not been mentioned explicitly by either
Conen, Hzrrison and Harrison or Kjeldaas and Holstein. Recent
experimental investigations at John Carroll University by
Trivisonno and Said on Potassium have verified that these shifts
do exist. Calculations from equations (31), (34), (35), and (36)
for various gl values are in good agreement with the magnitudes
of the shifts in the minimum reported by Trivisonno and Said.

The magnitudes for the relative attenuation also coincide with
their experimentul results.

The case for a transverse wave moving perpendicular to the
field shows an anomaly in the maxjimum positions. Here, however,
the shifts in the maximum are extremely small for verious ql
values compared to the shifts in the minimum positions of Sll'
The minimum points of Sp, show no appreciable change. Due to
the extremely small shift in the meximum values Lo experimental
verification can be obtained. In table II the points of maximum
and minimum positions are given. In figures 3 and 4 a plot of the
attenuation of a transverse wave moving perpendicular to the
magnetic field as a function of the eiectron mean free path is
presented.

Figures 5 and 6 represent the case where the transverse wave
is in & transverse magnetic field polarized parallel to the field.

Experimental investigations by Trivisonno and Said® as well as

K17

Foster, Meijer and Mielczare on potassium have shown that the



29

free electron model is valid, that is, the Fermi surface is spherical.

The oscillations and nagnetic field dependence of attenuation are in

accord. with the free electron theory.



The effective conductivity tensor o, can be writter as

o_l
11

Let

New

then

= =3iwt(l - iwr) X

=00

APPENDIX A

-

n
Y1=00
N (1 - 10T )gy
) 1+ i{nw, - 0)7T
==
n=ow
(1 - iwﬂ)gn
1l - iwt -
1+ i(hwc - )T
N=«0
= (nwb - w)T

§' (1 - ia) (1
1l + is
-

N=ee

'
g

(1

l1-y=b

301(1 + of18)b

30

11 T g212(wr + ib)(1 + iwr)

-

(A1)
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For oiz we can write it as follows

N=co g;l
> (1 - iar)

1l + ia
! 3iwT N=-00

12 q_l N=c0

1l - iwt - T+ ia

n=-

Let

N=w

n=«w

o) o . 3w 3omw
12 ~ " qi(b - iwt)  ql({wt + ib)

9w 72(u)?
qzlz(a)'r + :l.b)2

(012)2 =

Let
¢ = (wr + 1b)

(o )2 _ 90)21:2 EE
12 qzzz 2

(¢]

gn(l - iar)

(A2)
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Now
D=
2
_w %0 (1 - ion)
o= ) 2 1+ 1ia
' 3 sn(l - daw) et
%2 = T< I T = (43)
\
== 1- ior - - tor)e,
1+ ia
==00
Let
N=c
- Sp
W = l + 32
n==00
Hence,
W +u21
(o} ) = 3L+ dar (Ve
22 1 + w7l b-c
e 2.2 2.2y 2
[012]= 3w°t4(1 + w®T%)u
O22 (q2)2(1 + iwrt)el(we) + uli]
1 \2
o
(°12)
- t
Let

d = ar(3° + ab)

e = bu? + blw
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Thus,

412 -1 + ewlb « (wr)2] - aw(db - (wr)

= + l
3(1 + wltl) a2 + &2

S11

Msking the approximation

212 [
811 = th_.(EE - ) -1

In the same manner 822 and 835 can be obtained.



APPENDIX B

To remove the difficulty in the integral Bessel summation we
begin by writing

Ii=o0 7 nN=oo

. |
gn gO (IA]
T+ i(nw, - )T g * 2up w2 + neulTl (31)
N=eoo =1
where
®y = 1l -~ iwrt
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Nn=c0 =00
2.2
2 &n 2 B0
®o 0§ + nfafte @O wgn? + nfe2rex2
n=1 n=
N=c
2 2
won
2.2
W T €n
= © ﬂz mzﬂz
0 0 2
252 1
w.T X
n=
=00
282 &n
= - (A1)
Wy - nz - az
and
n=1

34
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where
2
af = - {—~—
Ce
Now
1 X
gn(X) =X f J2n(2t)
6]
. an/2
Jop(2t) = % f (-1)2 cos 2n 6 cos(2t cos 6)d6
0]
N=w
_ (-l)n cos 2n6 cos(2t cos 6)ds6 dt
(Doﬂx n2 - a2
n—l
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n=co
(-1)" cos 2n6 _ 1 [, _ xa cos(26a)
2 " 0nl T T gin(an)
n2 - a 2a
n=
Hence

X /2
. f f [1 L. 905(\29&‘)] cos(2t cos 6)de at
wonX sin{amn)

0 %o
X
='Lox_/‘ Jo(zt)dt
(o

e

fil“’

cos(26a)cos(2t cos 6)dt de
sin(an)
0
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Thus,
g X pn/2
0 2a J/- .
- 56 + EEK_ETH(EET A A cos(26u)cos(2t cos M)A dt (A1)
However,

/2
-/r cos(2t cos 6)cos 26a d6= = sin(ar)

Z2a
G
=00
w1+ (-1)P()2n
(12 _ aZ)(22 _ a2) (n2 - aZ)
n=1
Hence,
X —
n=00
]
g n, . 2n g
__9.+LX 1 + 5 é-l)(t) > 5 dt:-_9+.].'_
®o %o (1% - a%) (n® - a%) % %
=1
0
R (-1)2(x)% (31)

1
56 DG 2 X2
(2n + 1)[(1 + q212> ... (n +;2_z—2-):]

n=1



Therefore,

=00

€n

1+ i(nw, - o)1

e 00

n=o -

(-l)in

(BL)
2 2 2

(20 +1) (1+ X ) . (_}s_)]

n [ 212 212

- n=1 -

-—
=

1
— |1+
W

wo=l-icn‘rf=l

In the report the above equation is always subtracted by 1
thus we denoted, the summation portion as b.
Using the same procedure we find that

n=o n=ow

N & 2 &
1+ (o - o)t~ ax 1+ i(nw, - o)t

N==00 N==w

=00

(_lannXZn-l

= = (B2)
2, X2 n? + x2\] 7"
(2n + 1)[(1 + q212> . . (qzzz )]

N==00

For r, Ve use the following relationships:

=

Tn

1+ i(nw - w)T

(B3)
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Usirng the same method 28 was done for B - 1 we obtain

=00

n L1
l+i(nu>c-w)'r_3
N==w0
n=w
n.an
+ (-1) X ==V (B3)
2 , X8 2 ., X8
(2n + 3)(2n + L)} (1 + ====] . . . [n® + =—=—
2.7 2,2
Q-1 q-1
n=1
For s, the same procedure is carried out,
N=co N=co =
Sn . Tn &n
1+ ilnw, - @)t~ ° 1+ i(ow. - w)t ~ (1 + i(nw, )7
N=-=00 S0 =00 .
n=c
qzzz

==

5 ===V (B4)
(2n + 1)[(12 + q§22> C (nz + %5):] ,
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TABLE II. - Sy, EXTREMA.

13
[AN]

ql | Maximum, | Relative Minimum, | Relative
X attenuation ; attenuation
25 4,20 8.80 0 0
7.40 10.20 5.6 3.7%
16.55 10.66 8.8 6.17
18 4,20 7.56 0 0
7.40 7.86 5. 3.50
10.55 7.72 8 5.34
15 4.20 6.70 0
7.40 6.56 3.32
10.55 6.30 4,79
13 4.15 5.98 0
7.35 5.61 3.15
10.55 5.34 4,33
il 4,15 5.11 0
7.35 4,61 2.91
10.55 4,37 3.739
9 4.15 4.11 0
7.35 3.60 2.59
10.55 3.44 3,17
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